Answers for Practise Puzzles - 2

1)

The required number is 236 and the sum is 11.

It is given that the first two digits of the required number are prime numbers i.e. 2, 3, 5 or 7. Note that 1 is neither prime nor composite. Also, the third digit is the multiplication of the first two digits. Thus, first two digits must be either 2 or 3 i.e. 22, 23, 32 or 33 which means that there are four possible numbers - 224, 236, 326 and 339.

Now, it is also given that - the difference between it's reverse and itself is 396. Only 236 satisfies this condition. Hence, the sum of the three digits is 11.



2)

A=2, B=1, C=9, D=4, E=3, F=8, G=6, H=5, I=7

Let's start with GHI = 9 * IE. Note that I appears on both the side. Also, after multiplying IE by 9 the answer should have I at the unit's place. The possible values of IE are 19, 28, 37, 46, 55, 64, 73, 82 and 91; out of which only 64, 73 and 82 satisfies the condition. (as all alphabet should represent different digits)

Now, consider DEF = 6 * IE. Out of three short-listed values, only 73 satisfies the equation. Also, ABC = 3 * IE is satisfied by 73.

Hence, A=2, B=1, C=9, D=4, E=3, F=8, G=6, H=5, I=7

219 438 657


--- = 73 --- = 73 --- = 73


3 6


3)

A, B & D are males; C is female. B is C's only son. A & D are C's brothers.

A(male) --- C(female) --- D(male)


|


|


B(male)

Work out which relation can hold and discard the contradictory options.

From (2) and (4), D can not be a only daughter and have a sister (B or C). Hence, D is A's brother i.e. D is a Male.

From (4), let's say that B is D's sister i.e. B is Female.
From (3), A is C's only son i.e. A is Male.
But D is A's brother which means that A is not C's only son. Hence, our assumption was wrong.

Thus, C is D's sister i.e. C is Female. And B must be C's only son.

Now it is clear that D & B are Males and C is Female. A must be a Male as only one of them is of opposite sex from each of the other three. And he is C & D's brother.How are they related to each other?



4)

32 minutes 43.6 seconds


In twelve hours, the minute hand and the hour hand are together for 11 times. It means that after every 12/11 hours, both the hands are together.

Similarly in twelve hours, the minute hand and the hour hand are exactly opposite to each other for 11 times. It means that after every 12/11 hours, both the hands are opposite.

Now, let's take an example. We know that at 12 both the hands are together and at 6 both the hands are exactly opposite to each other.

After 6, both the hands are in opposition at [6+(12/11)] hours, [6+2*(12/11)] hours, [6+3*(12/11)] hours and so on. The sixth such time is [6+6*(12/11)] hours which is the first time after 12. Thus after 12, both the hands are opposite to each other at 12:32:43.6

Hence, Dr. DoLittle takes 32 minutes and 43.6 seconds to reach home from the clinic.



5)

Mr. Haani crossed 7 SlowRun Expresses during his journey.

Let's say that Mr. Haani travelled by SlowRun Express on Wednesday 10:00PM from Mumbai. The first train he would have crossed is the one scheduled to arrive at Mumbai at 11:30 PM the same day i.e. the one that left Bangalore at 10:00 PM on last Sunday.

Also, he would have crossed the last train just before reaching Bangalore on Saturday.



6)

The cabins from left to right (1-6) are of Mr. Solanki, Mr. Sinha, Mr. Shaan, Mr. Sharma, Miss Shudha and Miss Shalaka.

From (2), cabin number 5 is assigned to Miss Shudha.

As Miss Shudha is allergic to smoke and Mr. Sinha, Mr. Shaan & Mr. Solanki all smoke, they must be in cabin numbers 1, 2 and 3 not necessarily in the same order. Also, Miss Shalaka and Mr. Sharma must be in cabin 4 and 6.

From (3), Mr. Shaan must be in cabin 3 and Mr. Sharma must be in cabin 4. Thus, Miss Shalaka is in cabin 6.

As Mr. Solanki needs silence during work and Mr. Shaan is in cabin 3 who often talks to Mr. Sharma during work, Mr. Solanki must be in cabin 1. Hence, Mr. Sinha is in cabin 2.

Thus, the cabins numbers are
1# Mr. Solanki,
2# Mr. Sinha,
3# Mr. Shaan,
4# Mr. Sharma,
5# Miss Shudha,
6# Miss Shalaka

7)

It is given that
2 wixsomes = 3 changs
8 wixsomes = 12 changs ----- (I)

Also, given that
4 changs = 1 plut
12 changs = 3 plutes
8 wixsomes = 3 plutes ----- From (I)

Therefore,
6 plutes = 16 wixsomes


8)

The required number is 236 and the sum is 11.

It is given that the first two digits of the required number are prime numbers i.e. 2, 3, 5 or 7. Note that 1 is neither prime nor composite. Also, the third digit is the multiplication of the first two digits. Thus, first two digits must be either 2 or 3 i.e. 22, 23, 32 or 33 which means that there are four possible numbers - 224, 236, 326 and 339.

Now, it is also given that - the difference between it's reverse and itself is 396. Only 236 satisfies this condition. Hence, the sum of the three digits is 11.

9)

A simple one.

As it is given that only one of the four statement is correct, the correct number can not appear in more than one statement. If it appears in more than one statement, then more than one statement will be correct.

Hence, there are 4 marbles under each mug.

10)

aswer is 7

11)

The cicumference of the earth is
= 2 * PI * r
= 2 * PI * 6400 km
= 2 * PI * 6400 * 1000 m
= 2 * PI * 6400 * 1000 * 100 cm
= 1280000000 * PI cm

where r = radius of the earth, PI = 3.141592654

Hence, the length of the thread is = 1280000000 * PI cm

Now length of the thread is increasd by 12 cm. So the new length is = (1280000000 * PI) + 12 cm

This thread will make one concentric circle with the earth which is slightly away from the earth. The circumfernce of that circle is nothing but (1280000000 * PI) + 12 cm

Assume that radius of the outer circle is R cm
Therefore,
2 * PI * R = (1280000000 * PI) + 12 cm

Solving above equation, R = 640000001.908 cm
Radius of the earth is r = 640000000 cm

Hence, the thread will be separatedfrom the earth by
= R - r cm
= 640000001.908 - 640000000
= 1.908 cm

12)
At the beginning of the 11th year, there would be 1,024,000 rabbits.

At the beginning, there were 1000 rabbits. Also, there were 4000 rabbits at the beginning of third year which is equal to 2828Z. Thus, Z = 4000/2828 i.e. 1.414 (the square root of 2)

Note that 2828Z can be represented as 2000*Z*Z (Z=1.414), which can be further simplified as 1000*Z*Z*Z*Z

Also, it is given that at the end of 6 months, there were 1000Z rabbits.

It is clear that the population growth is 1.414 times every six months i.e. 2 times every year. After N years, the population would be 1000*(Z^(2N)) i.e. 1000*(2^N)

Thus, at the beginning of the 11th year (i.e. after 10 years), there would be 1000*(2^10) i.e. 1,024,000 rabbits.

13)
The man drunk 190oz of water.

It is given that the man has 20oz bottle of sprite. Also, he will drink 1oz on the first day and refill the bottle with water, will drink 2oz on the second day and refill the bottle, will drink 3oz on the third day and refill the bottle, and so on till 20th day. Thus at the end of 20 days, he must have drunk (1 + 2 + 3 + 4 + ..... +18 + 19 + 20) = 210oz of liquid.

Out of that 210oz, 20oz is the sprite which he had initially. Hence, he must have drunk 190oz of water.ed

14)
There are 5 such expressions.

99 + (9/9) = 100

(99/.99) = 100

(9/.9) * (9/.9) = 100

((9*9) + 9)/.9 = 100

(99-9)/.9 = 100



15)

answer is 7/9

Assume that number of boys graduated from City High School = B
Therefore, number of girls graduated from City High School = 2*B

It is given that 3/4 of the girls and 5/6 of the boys went to college immediately after graduation.
Hence, total students went to college
= (3/4)(2*B) + (5/6)(B)
= B * (3/2 + 5/6)
= (7/3)B

Fraction of the graduates that year went to college immediately after graduation
= [(7/3)B] / [3*B]
= 7/9

Therefore, the answer is 7/9

16)

The mule was carrying 5 sacks and the donkey was carrying 7 sacks.

Let's assume that the mule was carrying M sacks and the donkey was carrying D sacks.

As the donkey told the mule, "If you gave me one of your sacks I'd have double what you have."
D + 1 = 2 * (M-1)
D + 1 = 2M - 2
D = 2M - 3

The donkey also said, "If I give you one of my sacks we'd have an even amount."
D - 1 = M + 1
D = M + 2

Comparing both the equations,
2M - 3 = M + 2
M = 5

Substituting M=5 in any of above equation, we get D=7

Hence, the mule was carrying 5 sacks and the donkey was carrying 7 sacks.


17) Person A came in first.

Let's assume that the distance between start and the point is D miles.

Total time taken by Person A to finish
= (D/20) + (D/20)
= D/10
= 0.1D

Total time taken by Person B to finish
= (D/10) + (D/30)
= 2D/15
= 0.1333D

Thus, Person A is the Winner.

18)

Assume that initial there were 3*X bullets.

So they got X bullets each after division.

All of them shot 4 bullets. So now they have (X - 4) bullets each.

But it is given that, after they shot 4 bullets each, total number of bullets remaining is equal to the bullets each had after division i.e. X

Therefore, the equation is
3 * (X - 4) = X
3 * X - 12 = X
2 * X = 12
X = 6

Therefore the total bullets before division is = 3 * X = 18

19)The sum of the digits of D is 1.

Let E = sum of digits of D.

It follows from the hint that A = E (mod 9)

consider, (" ^ " means power)
A = 1999 ^ 1999
< 2000 ^ 2000
= 2 ^ 2000 * 1000 ^ 2000
= 1024 ^ 200 * 10 ^ 6000


< 10 ^ 800 * 10 ^ 6000


= 10 ^ 6800


i.e. A < 106800


i.e. B < 6800 * 9 = 61200


i.e. C < 5 * 9 = 45


i.e. D < 2 * 9 = 18


i.e. E <= 9


i.e. E is a single digit number.


Also,


1999 = 1 (mod 9)


so 19991999 = 1 (mod 9)



Therefore we conclude that E=1.

20)

The last person covered 120.71 meters.

It is given that the platoon and the last person moved with uniform speed. Also, they both moved for the identical amount of time. Hence, the ratio of the distance they covered - while person moving forward and backword - are equal.

Let's assume that when the last person reached the first person, the platoon moved X meters forward.

Thus, while moving forward the last person moved (50+X) meters whereas the platoon moved X meters.

Similarly, while moving back the last person moved [50-(50-X)] X meters whereas the platoon moved (50-X) meters.

Now, as the ratios are equal,
(50+X)/X = X/(50-X)
(50+X)*(50-X) = X*X

Solving, X=35.355 meters

Thus, total distance covered by the last person
= (50+X) + X
= 2*X + 50
= 2*(35.355) + 50
= 120.71 meters


Note that at first glance, one might think that the total distance covered by the last person is 100 meters, as he ran the total length of the platoon (50 meters) twice. TRUE, but that's the relative distance covered by the last person i.e. assuming that the platoon is stationary.

21) answer is 9

To verify this, you can make a drawing of a cube, & number each of its 12 edges. Then, always starting from 1 corner & 1 edge, you can determine all of the possible combinations for tracing along the edges of a cube.

There is no need to start from other corners or edges of the cube, as you will only be repeating the same combinations. The process is a little more involved than this, but

is useful for solving many types of spatial puzzles.

22)

Mr. Bajaj is the Engineer and either his wife or his son is the Doctor.

Mr. Bajaj's wife and mother are not blood relatives. So from 3, if the Engineer is a female, the Doctor is a male. But from 1, if the Doctor is a male, then the Engineer is a male. Thus, there is a contradiction, if the Engineer is a female. Hence, either Mr. Bajaj or his son is the Engineer.

Mr. Bajaj's son is the youngest of all four and is blood relative of each of them. So from 2, Mr. Bajaj's son is not the Engineer. Hence, Mr. Bajaj is the Engineer.

Now from 2, Mr. Bajaj's mother can not be the Doctor. So the Doctor is either his wife or his son . It is not possible to determine anything further.

23)

Carrie is married to Cam.

"Sam's wife and Billy's Husband play Carrie and Tina's husband at bridge."

It means that Sam is not married to either Billy or Carrie. Thus, Sam is married to Tina.

As Cam does not play bridge, Billy's husband must be Laurie.

Hence, Carrie is married to Cam

24)

One way to solve it is by making 3 equations and solve them simultaneously. But there is rather easier way to solve it using Backtracing.

It's given that at the end, each had 24 tractors (24, 24, 24) i.e. after Z gave tractors to X & Y as many as they had. It means that after getting tractors from Z their tractors got doubled. So before Z gave them tractors, they had 12 tractors each and Z had 48 tractors. (12, 12, 48)

Similarly, before Y gave tractors to X & Z, they had 6 & 24 tractors respectively and Y had 42 tractors i.e. (6, 42, 24)

Again, before X gave tractors to Y & Z, they had 21 & 12 tractors respectively and X had 39 tractors i.e. (39, 21, 12)

Hence, initially X had 39 tractors, Y had 21 tractors and Z had 12 tractors.

25)

The sign-maker will need 192 zeroes.

Divide 1000 building numbers into groups of 100 each as follow:
(1..100), (101..200), (201..300), ....... (901..1000)

For the first group, sign-maker will need 11 zeroes.
For group numbers 2 to 9, he will require 20 zeroes each.
And for group number 10, he will require 21 zeroes.

The total numbers of zeroes required are
= 11 + 8*20 + 21
= 11 + 160 + 21
= 192

26)

It is always possible to find odd coin in 3 weighings and to tell whether the odd coin is heavier or lighter.

Take 8 coins and weigh 4 against 4.

If both are not equal, goto step 2

If both are equal, goto step 3

One of these 8 coins is the odd one. Name the coins on heavier side of the scale as H1, H2, H3 and H4. Similarly, name the coins on the lighter side of the scale as L1, L2, L3 and L4. Either one of H's is heavier or one of L's is lighter. Weigh (H1, H2, L1) against (H3, H4, X) where X is one coin remaining in intial weighing.

If both are equal, one of L2, L3, L4 is lighter. Weigh L2 against L3.

If both are equal, L4 is the odd coin and is lighter.

If L2 is light, L2 is the odd coin and is lighter.

If L3 is light, L3 is the odd coin and is lighter.

If (H1, H2, L1) is heavier side on the scale, either H1 or H2 is heavier. Weight H1 against H2

If both are equal, there is some error.

If H1 is heavy, H1 is the odd coin and is heavier.

If H2 is heavy, H2 is the odd coin and is heavier.

If (H3, H4, X) is heavier side on the scale, either H3 or H4 is heavier or L1 is lighter. Weight H3 against H4

If both are equal, L1 is the odd coin and is lighter.

If H3 is heavy, H3 is the odd coin and is heavier.

If H4 is heavy, H4 is the odd coin and is heavier.

The remaining coin X is the odd one. Weigh X against the anyone coin used in initial weighing.

If both are equal, there is some error.

If X is heavy, X is the odd coin and is heavier.

If X is light, X is the odd coin and is lighter.

27)

Total 36 medals were awarded and the contest was for 6 days.

On day 1: Medals awarded = (1 + 35/7) = 6 : Remaining 30 medals
On day 2: Medals awarded = (2 + 28/7) = 6 : Remaining 24 medals
On day 3: Medals awarded = (3 + 21/7) = 6 : Remaining 18 medals
On day 4: Medals awarded = (4 + 14/7) = 6 : Remaining 12 medals
On day 5: Medals awarded = (5 +7/7) = 6 : Remaining 6 medals
On day 6: Medals awarded 6

I got this answer by writing small program. If anyone know any other simpler method, do submit it.

28)

The answer is 381654729

One way to solve it is Trial-&-Error. You can make it bit easier as odd positions will always occupy ODD numbers and even positions will always occupy EVEN numbers. Further 5th position will contain 5 as 0 does not occur.

The other way to solve this problem is by writing a computer program that systematically tries all possibilities

***********************************ENF OF ANSWER SESSION FOR PRACTISE PUZZLES - 2 ***************************

Thanks,
All The Best

No comments:

Post a Comment